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served on our maps. Fig. 4 shows the variation of the 
'satellite peak' separation with the amplitude of the 
displacement. Both modulation waves involved in the 
Patterson interaction have the same amplitude and 
phase. In Fig. 5, the maximum density in the central 
peak is shown for the Patterson interaction of two 
displacement modulation waves with equal phase but 
with different amplitudes. The amplitude of one wave 
is constant (0.55 A); the amplitude of the other modul- 
tion wave varies from 0 to 0.6 A. 

Note added 29 August 1972. The least squares refine- 
ment of atomic coordinates based on measured 'a' 
reflections from this sample has been completed and 
published elsewhere. It produced coordinates that in 
some cases (Na/Ca cations) differed substantially from 

those given by Phillips et al. (1971) but these differences 
do not effect the conclusions reached in this paper. 
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The Phase Function: New Developments in the Symbolic-Addition Procedure 
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A modification of the symbolic-addition procedure, based on the introduction of a 'phase function', 
is proposed. This function which determines the numerical values of the symbols, enables one to select 
rapidly the best solution from a large number of possible ones. Examples of non-centrosymmetric 
structures solved by this method are given here. 

Introduction 

It is well known that the most critical part of solving 
non-centrosymmetric structures by direct methods lies 
in the determination of a starting set of numerical 
phases. The number of such phases increases with the 
complexity of the structure (Germain &Woolfson, 1968). 

Karle and Karle who have demonstrated the power 
of these methods have developed a successful proce- 
dure using symbols (Karle & Karle, 1966). The main 
difficulties in using this procedure are: 

(a) in the first step, single indications of phases from 
equation (1) must be accepted 

~Hr~(pK-'I-~H_K (Cochran, 1955), (1) 

(b) considerable care must be applied in the use of 
equation (2) 

~0H~ <~0K+rPH--K>K (Karle & Karle, 1966) (2) 

(c) determination of the numerical values of the 
symbols. 

* Present address: Institut de Chimie des Substances 
Naturelles du C.N.R.S. 91, Gif sur Yvette, France. 

Starting with numerical phases instead of symbols, 
the multisolution approach (Germain & Woolfson, 
1968; Germain, Main & Woolfson, 1970, 1971) seems 
to be themost  practical 'computer-based' method but 
is however limited in view of computational cost and, 
in unfavourable cases, of the number of Fourier synthe- 
ses to examine. 

The need for a safe procedure to assign numerical 
values to the symbol used in the symbolic-addition 
method led us to the formulation of an appropriate 
test called 'the phase function' (Riche, 1970). We 
showed that the most probable combination of phases 
{~h} belonging to a set of high ]E[ values is given by 
the maximum of relation (6). 

Later on, Schenk (1971) used some practical tests 
to select numerical values for the symbols. One of 
them (Q function) could be related to the phase func- 
tion. 

We recall briefly how we formulated relation (6) in 
{} I. Use of the phase function and the change it pro- 
duces in the symbolic-addition method is shown in {} II. 
The practical procedure for phase determination is 
described in {} III. In § IV results are discussed. 
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I. Background 

For simplicity, we assume that the space group is P 1 
and that all atoms are identical. The normalized struc- 
ture factor En is then given by: 

E H  = I/-N exp (2njH. rt), 
i = 1  

H : reciprocal lattice vector 
r : vector defining the position of the ith atom, 
N : number of atoms in the unit cell. 
The unitary structure factors are given by: 

U H  = E H / ] / N .  

Let a set of reflexions of high [E[ values: A={~h} 
be given. Using the Sayre-Hughes formula (Sayre, 
1952; Hughes, 1953) we can calculate the expected 
value Vn of EH for a large number of reflexions be- 
longing to a second set: B. 

For H z B,  VH will be defined by: 

VH=SH- <EKI. EH--Ki>K, = -SH ~ EK,. EH-K, • (3) 
PH l=1 

In this expression EK~ and EH-K~ belong to A; PH is 
the number of contributors (EKt • EH-Kt) and sn is a 
scaling constant. We introduce for the ith contributor 
the notation: 

V i H = E K /  . E H _ K i = a  ~ exp (jo~i) 

at = IEKt. EH-K~I 
~l = ~0r~t + (PH- Kt 

~iH --'~ IVH -- Villi 
AtH = I U H -  vm] • 

These relations are illustrated in Fig. 1. 
We wish to find the most probable combination of 

phases {~} through the determination of the most 
probable distribution of the vectors EKgEn-Kv 

In the centrosymmetric case, the probability distri- 
bution of the product EK • EH-K, for a given value of 
UH, was obtained by Cochran & Woolfson (1955). A 
similar distribution can be derived for a non-centro- 
symmetric space group: when EK and E H _  K have speci- 
fied fixed values, it reduces to the well known circular 
normal distribution (Cochran, 1955). 

We make the basic assumption that UH can be ap- 
proximated in phase and in modulus by VH. Now con- 
sidering the approximated distribution: P(Jin)OC 
exp (--6~H), the most probable combination of all pro- 
ducts EKt • EH-KI,* and consequently the most proba- 
ble combination of phases {~0t} can be obtained by a 
mean-square minimization of the expression: 

p H  

S =  ~ ~ J ~ H .  (4) 
H~B i =  1 

S reduces to (Riche, 1970; 1972): 
PH 

s =  ~ ~ a~-~-(~,~o~,...,~0,,) (5) 
H~B i =  1 

• It is assumed that the J,H'S are mutually independent. 

. . . ,  = - -  ~ aha J COS ( ~ i - - ~ j )  
H~B PH i j = l  H 

(6) 
and: 

GH = 2SH -- s~IVN. (7) 

S being always positive, it follows that: among all 
combinations of  {~0i} the most probable are those that 
lead to the maximum of  function (6). 

When the modulus of VH is rescaled to the mod- 
ulus of Un the scaling constant is independent of H, 
and GH can be ignored. Recently we introduced the 
generalized Sayre-Hughes formula (Hauptman, 1970): 

EH~ IEnI(EK,. EH-K,)K, 
Ix(A,)_\ (8) 

IEK,. io(A~) / K~ EH-Ki] 

where /r(X) is a modified Bessel function of order r 
and: 

2 
A i =  ~ - ~  I E H E K t E H - K i l  • 

In formula (7) the value of SH is then given by: 

S H 
IE.I 

II(Ai) (9) 

Relation (6), called the phase function, depends only 
on the phases of the A set. 

It is important to note that ~- is a 'structure-invar- 
iant quantity'. This means that f f  is independent of 
the choice of origin and reference frame. 

Numerical values o f ~ -  are put on an 'absolute scale' 
by: 

~(~1, Cz, • . . . .  , ¢,,) 
r . . . . . .  ( r ~ l ) .  (10) 

H~B i = 1  

B 

YH V H ~iH 

Ki[ 

Fig. 1. Phase notation. 
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The value associated with a maximum is a measure of 
the internal consistency of the phase combination 
(Riche, 1971). Defining qt ~ A by: 

q~ = m l n +  ~ mjxj (1 l) 
j = l  

where xj are the r unknown phases of A, we obtained 
(Riche, 1972): 

o~-(@i,@2,...,@,,)= ~ Pk. cos (Mxn + Z Mjx:). (12) 
k j = l  

Thus the phase function can be computed as an r-di- 
mensional Fourier map and peaks in the map give the 
most probable values for the set of phases {~p~}. 

H. Introduction of the phase function 
in the symbolic-addition method 

Maximizing relation (6) with a large number of un- 
knowns in the A set would take too much computing 
time. Symbolic addition provides a useful way to in- 
crease the number of known phases in the A set starting 
from a small number of symbols. The application of ~ 
is quite powerful in determining the numerical values 
of the unknown symbols. The reliability of the results 
depends mainly on the building-up of the A set and the 
introduction of ~" in the symbolic-addition procedure 
leads to some modifications. 

(1) Restriction of  the 'symbolic addition' 
Restriction of the use of equation (1) along with an 

increased number of symbols gives more reliable re- 
sults (Riche, 1971). 

Let us call q>0 the starting set, q>~ the set of phases 
generated by ~O~=~00+~00._g. This operation repre- 
sents the first cycle of symbolic addition. Another cycle 
of symbolic addition can be performed, but through 
our personal experience, results are more reliable if we 
keep the number of symbolic-addition cycles to the 
lowest number possible: practically only one. Then 
{40+ ~1} constitutes the A set for the computation of 
the phase function. 

(2) Weighted symbolic addition 
Generally the acceptance of a phase obtained through 

equation (1) is subject to the calculated variance asso- 
ciated with the triple product: 

A =2[EHEKEH_KI/I/N (Karle & Karle, 1966). 

This limits strongly the number of accepted phases. 
Without this restriction and starting from a set of sym- 
bolic phases tb °, we can attain a large number of phases 
giving numerous but weakly correlated pieces of in- 
formation. 

By accepting all these phases and by giving them 
a 'weight', it is possible to include in the first cycle of 
symbolic addition all the information within reach. 
Let w = 1 be the weight of each reflection in the starting 

set. We define: 
wn = WKWn-KWr, (13) 

the weight of reflection H obtained by (1). wr reflects 
the reliability of equation (1) and is smaller than unity. 
The usual weighting scheme is: wr=probability that 

(~0K + @.-K) - 45 ° < ~On < ((/9 K --]- ~ H - K )  -'~ 45°" 

(3) Introduction of  multiplicity 
Often, in the symbolic addition, a phase ~0n is given 

by two or more relationships leading, as below, to two 
or more symbolic expressions: 

qgn -- ~gl + q~n-K1 = a 
(0n--~ ~0K2 + q~H-K2 = b .  

Without any information about the values of a and b 
we cannot use equation (2). If we choose one of these 
two values (the most probable one for instance) we 
lose the second one. A simple way to keep both of them 
through successive cycles of symbolic addition is to 
include this reflexion twice, using the two phases with 
a multiplicity factor which would be in the above 
example 0.5. More generally, in the cycle n of the sym- 
bolic addition, let a phase be given by r contributors 
(~pg+~0n_g)j(j---= 1,r). Consequently we shall include 
this reflexion r times in the cycle n + 1. For the reflexions 
belonging to the starting set the multiplicity factor is 
unity. The reflexion number j will have then the phase 
(~0K'JI - qgn_K)j ,  the weight (WKWrI-KWr)j and the multi- 
plicity factor: 

(mKmn-K)j 
m j  = r .... " 

(mKmn_K)j (14) 
j = l  

(4) Weighted phase function 
According to the above, it appears logical to include 

the notion of weight and multiplicity into the phase 
function. Each phase of the A set is characterized by 
wn and m. .  Let us define the weight of a contributor 
(EKE._K)~ to the Sayre-Hughes equation by: 

~"~lH = ( W K W H  - K m K m H  - K ) l  • ( 1 5 )  

It can be shown (Riche, 1972) that relation (6) takes 
the following form: 

~-(~01, ~02,..., ¢o,,) 

= - -  £-2~Dja~aj cos(~.~-c~j) H (16) 
HeB CH l=1 = 

where: 
P H  

c n = ~  f2~. (17) 
i = 1  

represents a normalizing constant. 
These definitions offer a direct way for programming 

symbolic addition. The final aim being to obtain, from 
the starting 4 °, the best set of phases A to compute 
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the phase function. This weighted symbolic addit ion is 
still l imited to one or exceptionally two cycles. 

III. Procedure 

Choice of the starting set 
This set of  symbolic phases is built up in the usual 

way (Karle & Karle, 1966; Germain,  Main & Woolf- 
son, 1970), and must include origin-defining reflexions. 
In most cases nearly all these origin phases have numer- 
ical values but it is not always necessary as we shall 
see below. 

SymboRc addition and computation of the phase function 
Starting with a q~0 set, one cycle of weighted sym- 

bolic addit ion gives another set ~1 of reflexions. The 
computat ion of the weighted phase function follows 
immediately,  all the phases {q~0+ q~l} constituting the 
A set. Relation (6) is calculated for every combinat ion 
of phases in an r-dimensional space Fourier  map  (r = 
number  of symbols in q~0) with intervals of  r~/4 for the 
phase of a general reflexion. 

Interpretation of the phase function 
Emerging solutions. In this case each m a x i m u m  of 

~-  is well resolved. Through our personal experience 
their number  rarely exceeds four. 

Lack of resolution. In certain directions the maxima 
are not defined. By adding new symbols we improve 
the resolution and precision of the numerical  values 
of  the older symbols (Riche, 1972). In some cases it is 
easier to run a second cycle of symbolic addit ion before 
the computat ion o f ~ ' .  This case arises especially in the 
monoclinic space group P21. 

Tangent refinement. For each selected combinat ion 
of phases given by ~" a tangent refinement is performed. 
For the best refinements we calculate the E map. 

IV. Results and discussion 

A dozen unknown structures were solved in this manner  
(Table 1). We have selected two typical cases, each 
exhibiting special features. 

(1) Determination of the structure of triphenylmethane 
This compound  (d, Table 1), crystallizes in space 

group Pna21 with two molecules in the asymmetric  
unit. The starting set is listed in Table 2. 

Table 2. Starting set for triphenyhnethane 
h k l E q~ 
15 9 0 3.73 0 
19 6 0 3-50 0 
3 2 1 2.17 0 

16 8 0 3.55 a 
3 4 3 2.51 b 
3 9 4 2.48 c 

16 1 4 2.67 d 
3 15 0 2.64 e 

0orTz 
0 t o x  
0 to 2n 
0 to 2n 
Oorr~ 

The phase function calculated after two cycles 
of unweighted symbolic addit ion showed 8 maxima  
(Riche, 1972). 1280 combinat ions  of phases were com- 
puted giving 2 numerical  values for the symbols a and 
e (0 or z0, 8 for c and d (0,zc/4,... ,7rc/4), and 5 for 
b (0, z~/4, lr/2, 31r/4, rr). 

As the reference frame had not been fixed, max ima  
appear for the values 0 or rt for the symbols b, c and d. 
To fix the reference frame it was enough to alter co- 

Table 1. Unknown non-centrosymmetrie structures solved using the phase function* 

Compound Formula Space group N/Z 
a CI3HIsNO2 P212121 16 
b C22H2oO~ P212t2t 29 
C C14H1404 P2t2t2t 18 
d Ct9Hts Pna21 38 
e C31H3bN402 P21212t 4l 

2CH3OH 
f C9Hl0N2Os P2t212t 16 
g C22H30N~O4 P2~2t21 28 
h CIzH260483 P2t 38 
i CgHnO3 P2t 12 

Number of Number of phase Rank of the maximum 
symbols in the combinations in ~" in ~ of the true 

starting set solution 
Total 'Space' calculated selected 

4 2 256 4 1 
3 1 32 2 1 
5 3 1280 4 1 
5 3 1280 8 1 
5 3 2048 4 3 

6 3 2560 4 1 
4 4 2560 4 1 
7 4 32768 4 4 
6 5 32768 4 1 

* 5 structures were solved in space group P2dc and in space group C2/c: Cesario & Pascard-Billy (To be published): and De 
Sagey (To be published). 

(a) PhyUochrysine. Riche (1970, 1972). 
(b) Isocollybolide. Pascard-Billy (1970, 1972). 
(e) Cyclohexane diepoxyde. Riehe (1972). 
(d) Triphenylmethane. Riche (1972). Pascard-Billy (1972). 
(e) Isocinchophyllamine. Guilhem (To be published). 
(f) Cyclobutane uracyl. Pascard-Billy (1973). 
(g) Ervatamine. Riche (To be published). 
(h) 2-S-Ethyl-2-thio-o-mannose diethyldithioacetal. Ducruix (To be published). 
(i) Phenyl hydracrylic acid. Cesario (To be published). 
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ordinates from the maximum in any of the three direc- 
tions b, c or d. This was done by making b=rc/4. 
The numerical values of c and d were thus determined. 
Tangent formula and E map were used in the usual 
way. 

(2) Determination o f  the structure o f  2-S-ethyl-2-thio- 
D-mannose diethyldithioacetal 

This compound (h, Table 1) crystallizes in space 
group P21 with two molecules in the asymmetric unit; 
only hOl reflexions with h + l  even were present in a 
list of E greater than 1.5. The starting set qs0 is listed 
in Table 3. 

Table 3. Starting set for  2-S-ethyl-2-thio- 
D-mannose diethyldithioacetal 

h k  l E qo 
4 1 10 3.43 0 

- -3  0 3 3.07 0 
- 6 2 3 2.21 ~z/4 origin + 

enantiomorph 
1 0 15 2.88 a 0 or rc 

- 4  0 4 2.66 b 0orrt  
-1  0 9 3.18 c 0 or 
- 3  5 1 2.50 d 0 to 2~z 

6 4 2 3"08 e 0 to 2re 
- 8  3 1 2.40 f 0to2n 
-1  4 9 2"82 g 0 to 2re 

dealing with. For structure f i n  Table 1, the entire run 
(one cycle of symbolic addition and the computation 
of o~) takes 9 seconds on an I. B. M. 370/165. For 
structure i, it takes around 30 seconds. 4096 phase com- 
binations were computed in the first case and 32768 in 
the second one. 

C o n c l u s i o n  

We have shown that the phase function used in a 
modified symbolic-addition method gives the most 
probable numerical values of a set of symbolic phases. 
The principal advantages of this procedure are: its 
simplicity, the speed of the corresponding program and 
its efficiency. 

As the symbols are more easily determined, we can 
increase their number with the consequence that the 
tangent refinement can be started with each phase de- 
termined with a lower variance. Solving structures of 
larger molecules would need a larger number of sym- 
bols. This extension of the symbolic addition method 
offers a simple way to manipulate many symbols to 
match the complexity of the structures. 

The author is indebted to Mrs C. Pascard-Billy for 
active and stimulating interest in this work, and for 
critical reading of the manuscript. The author thanks 
Dr G. Tsoucaris for helpful advice. 

One cycle of weighted symbolic addition was run 
and after the examination of the phase function it ap- 
peared that a second cycle would be necessary. All the 
invariants involved in the first cycle were computed 
using the formula of Messager & Tsoucaris (1972). One 
of these was eliminated because its computed value 
was greater than z~/4, and a second cycle of weighted 
symbolic addition was run. The function gave four 
well resolved maxima. The corresponding solutions 
were refined by tangent formula and the structure ap- 
peared on one of the four E maps. 

Considering now all these results we can point out 
the main features of the procedure: 

(1) Starting with a large number of phase combina- 
tions it reduces the number of the possible solutions 
to a very small number. This leads to an even smaller 
number of E maps to be examined. 

(2) Usually, the solution of the structure corre- 
sponded to the first maximum of ~-. 

The weighted symbolic addition and the weighted 
phase function are linked together in the same program, 
D E V I N  written in Fortran IV. Computing time de- 
pends on the number of phase combinations we are 
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